If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+74x+128=0
a = 5; b = 74; c = +128;
Δ = b2-4ac
Δ = 742-4·5·128
Δ = 2916
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2916}=54$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(74)-54}{2*5}=\frac{-128}{10} =-12+4/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(74)+54}{2*5}=\frac{-20}{10} =-2 $
| -21-4k=-4(k+7)+7 | | 53x-4=52x+1 | | 3x-13+67=180 | | 7x-9=12+16 | | -2=0n-1n-2 | | 0.8x=200 | | 0.1•2x=4/x | | -34+6v=8(1+6v) | | 6=3-n-2n | | 4x+25=106 | | 3x+5=-9x-55 | | e-7.3=0.35 | | x/(-3)+11=8 | | 4x-70=-6x+30 | | (X+3)/(x-2)-8/3=(x+2)/(x-1) | | x+5/8=7/4+x-5/3 | | 48+y=180 | | 7x+3x+40=5x-45+100 | | (2.5^x)=6.25 | | 2(x-1=3(-x+16) | | 50-3x=180 | | -18=3z+6z | | 2x+50=25+50 | | 3(x+1)+4(x-1=) | | 3y-44=31 | | (7f+6=90 | | 5x-15=-5x+45 | | x+(-18)=-74 | | 102/8.50=d | | 0=100+10t-16t^2 | | 22=13-x | | 10+5b=20-3b |